
Approaching Any
System Design

Discussion

Chapter 0:
Let’s Dive In

Approaching any System Design Discussion

Let me ask you , one simple question .

What gives backend developers feelings of power ?

Status

µ
""

salary 111111111141

When the architect 1111111/1111/11/111
Approves the system
design without any
changes

Most of us in system design discussions :

Buzzwords in Software Engineering in recent years

1) NoSQL !

2) Big Data / MapReduce !

3) ACID !

4) Web scaling !

5) DB Sharding !

6) CAP Theorem !

7) Eventual consistency !

8) Real time !

9) Cloud services !

If you are as confused as Jackie Chan in the above image ,

check out my last post on System Design Basics .

↳ link is in the
post .

Problems that I faced in design discussions

1) Open - ended problem

2) No standard / ideal / perfect answer

B) Unstructured nature of interviews
.

4) Lack of experience in building distributed systems

5) Not enough preparation .

Cleared

System Design Round
No lowball / No

7 with positive feedback? Offer

Yes

Higher position ,
better salary

coverall better offer)

shows your ability to handle
complex distributed systems .

What do we follow in SDLC (Software Development Lifecycle)?

0 Validation & concept

1 Planning

This is what we
> need to do in

system Design
2 Analysis Interviews .

3 Design

4 Implementation

5 Testing & Integration

6 Sustaining

Steps that you can follow while approaching any SD .

1- Requirements/ → Ask questions } Will help you in defining scope .
Goals Analysis → Get your doubts cleared .

→ Keep in mind (No answer is perfect)
→ spend enough time in requirements analysis (Do NOT rush)
→ Real life systems does NOT consists of 1 or 2 parts .

(You have limited time 140 minutes around) ,

clarify / ask interviewer what parts of system you should focus on)

Going ahead , for each step .

I'll try to give different design considerations
for developing movie ticket booking system like

BookMyShow .

Here are some points for designing BookMy Show that should be
discussed before moving on to next steps :

Functional Requirements :

1) List down cities

2) After selecting city , we need to list down movies .
3) On selecting movie , system should show cinema halls & shows .
4) User should be able to select cinema hall

,
show and seats .

T
should we add any limit in seats booking ?

5) Distinguish bet
"

booked / on hold / available seats .
How much time should we allow before payments to release the

booked seats ?
Are we focusing on backend only or are we developing Frontend too?
Do we need to display trending movies as per location ?

There can be many more questions .

All these questions will help in determining how our end design
look like .

(Note : We 'll discuss more about Non - functional Requirements
in the upcoming chapter)

2. API Design → Discuss what APIs are expected from the system
→ Establishes exact contract from the system .

I Also helps in validating the requirements specified in
first step .)

some API definitions for our Book MyShow - like service :

searchMovies (keyword , city / Iat - lang ,
radius = ✗ km

,

keyword spellcheck , start - datetime ,
end

- date time
,

results
- per - page , order

- by)

reserve Seats (User
-
session

-
id
,
movie

- id
,
cinema

.
hall

-
id
,

show
- id

,
seats

-
to
.

reserve []
,

mobile . number , email - id)

> Will return the status of the reservation
.

> will return JSON with list of movies 4 shows .

3. Approximate → Always better to estimate the scale of the system
scale → How it'll help you ?
Estimation → scaling

→ Partitioning
→ Load balancing
→ caching

→ Traffic Estimation :

Assume number of pageviews I ✗ billions) / month
tickets sold I ✗ millions) / month

→ storage Estimation :

Assume each booking 1 Seat IDs I] , show ID ,
Movie ID

, Timestamp ,
-

User ID) ⇒ 100 bytes of storage .

Movies&cinema_ data will take another 100 bytes .
Single day storage estimate :
1000 cities * 10 cinemas * 1000 seats * 3 shows * (100-1100) bytes
= 6GB / day

→ Network Bandwidth Estimation :

→ Traffic Management
→ Load Balancing

4. Data Model / → clarifies how data will flow in system .

DB Design → Helps in data management , sharding . partitioning .

→ Identify the data entities
→ Identify relationships between them
→ Advanced aspects can include :

1) Storage
2) Transportation
3) Compression
4) Encryption / Decryption

some entities for Book MyShow - like service :

User : User ID
,
Name

,
Password

,
Email

,
Phone

, City

Movie : Movie ID
,
Title

, Summary , Release Date . Language . Genre

Booking : Booking ID , Seats , Timestamp , Status ,
User ID

,
Show ID

Show : Show ID
,
Date

.
Start Time

,
End

- Time
,
Movie ID

,
Theatre

which database should we use ?

Would NoSQL like MongoDB best fits our requirements
,
or we

should use MySQL - like solution .
C Do we need block storage for

storing pictures / trailer videos) .

→ Discuss pros & cons along with your requirements in deciding
your database .

5- High - level → Try to draw block diagram of core components of the system .

Design (MID) → Try to identify each and every components that are needed
to solve the use cases defined in first step.

At a high level
.

>
E- I

L
Cache servers

o n

pi
> < > a >

,

^

Clients Load Balancers
Application

'

Web Servers Server
Database

Traffic I'Yanagement v

User Sessions

Management ✓

→ Ticket Bookings
→ Data storage in DB
→ caching the data
in cache servers to

process reservations .

6- Detailed → Ask interviewer for which components you should dig deeper .
Component
Design → Dig deeper into 2-3 components only .

→ Provide different approaches .
(Discuss pros & cons)
(consider all tradeoffs & system constraints
& choose one)

For our use case .
you can discuss Preservation Workflow

→ Activity Diagram
→ Data flow diagram

→ We'll be storing tons of data ,
how should we handle DB distribution?

1) Raise a question
2) Come up with a solution .

3) Discuss the issues .

→ How much and at which layer we should use caching ?

→ What components needs better load balancing ?

→ How are we gonna track all the active reservations that
haven't completed the payment yet ?

→ How are we gonna keep track of and serve the

waiting customers ?

→ How would we handle trending 1 blockbuster movies
bookings ?

7. Find out → Try to discuss as many tradeoffs ,
bottlenecks

bottlenecks 4 as possible .

mitigate them
→ Discuss different approaches to minimize / remove them.

Things that you can discuss :

1) Single point of failures & their mitigation

2) Data replicated or NOT ? if we lost any server ?

3) Do we have enough instances of microservices running
such that few failures should not cause total breakdown .

4) Performance monitoring

5) System health checks

6) How to handle concurrency ? (Multiple users trying to book same

✓ seat?

We can use 591 transactions
(with isolation level serial izable)
→ ← highest isolation level amongst

guarantees safety from : → Read uncommitted
→ Dirty reads → Read committed
→ Non - repeatable reads → Repeatable read
→ Phantom reads .

→ Serializable

7) Fault tolerance
what if our active reservation system fails ?

↳ How are we gonna retrieve all active reservations ?

↳ Fetch users from Booking table
with status Reserved

(not Booked) •

OR
we can have master-slave configuration to make it

fault tolerant .

